
A Quantitative Study of Video Duplicate Levels in

YouTube

Yao Liu1, Sam Blasiak2, Weijun Xiao3, Zhenhua Li4, and Songqing Chen2

1SUNY Binghamton, yaoliu@cs.binghamton.edu
2George Mason University, {sblasiak,sqchen}@cs.gmu.edu

3Virginia Commonwealth University, wxiao@vcu.edu
4Tsinghua University, lizhenhua1983@tsinghua.edu.cn

Abstract. The popularity of video sharing services has increased exponentially

in recent years, but this popularity is accompanied by challenges associated with

the tremendous scale of user bases and massive amounts of video data. A known

inefficiency of video sharing services with user-uploaded content is widespread

video duplication. These duplicate videos are often of different aspect ratios, can

contain overlays or additional borders, or can be excerpted from a longer, original

video, and thus can be difficult to detect. The proliferation of duplicate videos can

have an impact at many levels, and accurate assessment of duplicate levels is a

critical step toward mitigating their effects on both video sharing services and

network infrastructure.

In this work, we combine video sampling methods, automated video compari-

son techniques, and manual validation to estimate duplicate levels within large

collections of videos. The combined strategies yield a 31.7% estimated video

duplicate ratio across all YouTube videos, with 24.0% storage occupied by du-

plicates. These high duplicate ratios motivate the need for further examination

of the systems-level tradeoffs associated with video deduplication versus storing

large number of duplicates.

1 Introduction

User generated video content has exponentially increased in the recent years. For ex-

ample, YouTube, Dailymotion, and Vimeo are among the most popular websites for up-

loading and sharing user generated content (UGC). YouTube alone has gained massive

popularity: it attracts more than 1 billion users every month, more than 100 hours of up-

loaded video each minute, and more than 1 million creators make money from videos

that they have uploaded [3]. We estimate that there are more than 849 million videos

on YouTube (Section 5.2). According to Sandvine, YouTube generates 13.19% of all

downstream fixed access traffic (e.g., cable network) and 17.61% of all downstream

mobile data traffic in North America during peak hours [2].

Unlike video on-demand service providers such as Netflix, which contracts with a

limited number video providers, UGC websites attract large numbers of video upload-

ers. This high diversity of uploaders poses a unique challenge for these UGC video

sharing websites: Videos can be uploaded in different incarnations by different users,

leading to duplicates in the video database. While duplicates that occur at the exact

byte-level can be captured by the video sharing service using cryptographic hashes,

user-generated (near-)duplicate videos are often uploaded in different encodings, have

different aspect ratios, can contain overlays or additional borders, or could be excerpted

from a longer, original video. As a result, they are assigned their own unique IDs in the

video database. Note that duplicates should not be confused with multiple transcoded

versions generated by a video sharing service to support streaming at different band-

widths and to different devices. These transcoded versions are associated with a same

video ID in the video database.

The proliferation of duplicate videos could impact many aspects of datacenter and

network operations and, as a result, have negative effects on the user experience. From

the video server’s perspective, duplicate videos could increase data storage, power, and

therefore overall costs of data center operations. Further, duplicate videos have the po-

tential to harm caching systems, degrading cache efficiency by taking up space that

could be used for unique content and increasing the amount of data that must be sent

over the network to in-network caching systems. These inefficiencies could be passed

on to the user in the form of duplicated search results, longer startup delays, and inter-

rupted streaming [17].

Although it is well known that duplication occurs in today’s UGC video sharing

websites, little is known about its precise level. Work to more-accurately determine

duplicate levels is necessary because, although deduplication procedures can improve

the overall efficiency of a video sharing system, deduplication itself could also be costly.

Quantifying the level of duplication is therefore critical for determining whether effort

to deduplicate, or otherwise mitigate the effect of duplicates, would be worthwhile.

As YouTube is the largest UGC video system today, we choose it as representative

of similar services, and measure its level of duplication. In the process of conducting

these measurements, we make the following contributions:

– We employ a novel combination of video sampling methods, automated video com-

parison techniques, and manual validation to estimate duplication levels in large-

scale video sharing services.

– Using these methods, we estimate that the duplicate ratio of YouTube videos is 31.7%
and that 24.0% of YouTube’s total video storage space is occupied by duplicates.

The remainder of the paper is organized as follows. Section 2 and Section 3 discuss

the motivation of this study and related work, respectively. Section 4 describes our

duplicate estimation technique. We report our results in Section 5. Finally, Section 6

concludes this work.

2 Motivation

Anyone who has watched videos on YouTube, or any other video sharing service, has

certainly noticed that near-duplicates of the same video often appear in the search re-

sults or are recommended as related videos. These impressions, however, are not useful

toward making recommendations for taking action to mitigate any potential efficiency

loss resulting from unnecessary duplication.

In preliminary work, we performed a small-scale assessment of 50 queries for the

titles of 50 popular YouTube videos from a randomly selected set (Section 4.1). Manual

assessment of these videos produced a rough estimate of a 42% duplicate ratio.

Viewing a small number of individual search results, however, is unlikely to yield

good estimates of the prevalence of duplicates across a video sharing service’s entire

database. The huge number of videos stored within services such as YouTube also in-

dicates that manually comparing videos to estimate duplicate ratio is infeasible. This

intractability motivates the need for a larger scale assessment, assist in determining the

necessity of and formulating further systems to conduct video deduplication.

3 Related Work
Data deduplication. Data duplication is common in storage systems. Deduplication

operates by detecting duplicates and storing only a single copy of a given chunk of

data. It is typically conducted on exact byte-level duplicates [4, 6, 10, 18, 23]. Detecting

exact duplicates is often performed using cryptographic-hash based approaches (e.g.,

SHA1) to create an index for fast lookups. These cryptographic hash-based approaches,

however, are inappropriate for detecting near-duplicate videos (i.e., videos that appear

the same or very similar to a human viewer). This unsuitability is due to the fact that

video files almost always contain significant differences at the byte-level even though

the visual content of a video may be replicated (due to changes in encoding, altered

resolutions, image-level editing, or temporal editing).

Near-duplicate video detection. The computer vision community has proposed a vari-

ety of strategies for detecting near-duplicate videos [5, 9, 19]. Two main types of tools

have been developed. The first is the local image descriptor [13, 14, 21], which describes

small sections within an image/keyframe. The second is the global descriptor [7, 16, 20,

22], which can be used to summarize the entire contents of an image or video. An ap-

proach for video duplicate detection that can employ either local or global descriptors

is called Dynamic Time Warping (DTW) [15]. DTW is a technique used to measure

distance between two sequences where a distance can be defined between sequence el-

ements. DTW operates by aligning elements from a pair of sequences, A and B. Specif-

ically, DTW aligns each element from sequence A to a similar element in sequence B
with the constraint that no changes in ordering can occur (see Figure 1).

Video deduplication. The rapid growth of video content on the Internet and its corre-

sponding storage cost have recently drawn much attention to the task of video dedu-

plication. For example, Kathpal et al. found that multiple copies (versions) of the same

video in different encodings and formats frequently exist. The authors proposed to save

space by conducting on-the-fly transcoding to only retain the copy with the highest

quality [11]. Shen and Akella proposed a video-centric proxy cache, iProxy. iProxy

stores the frequency domain information of the video’s key frames in an Information-

Bound Reference (IBR) table. iProxy improves the cache hit rate by mapping videos

with the same IBR to a single cache entry and dynamically transcodes the video dur-

ing playback [17]. However, both works [11, 17] only deal with duplicates introduced

by a limited set of transformations, e.g., quantization, resizing, and different formats

and encodings. Other forms of transformation, such as excerption, concatenation, and

splicing, would not be detected or deduplicated. Katiyar and Weissman proposed ViD-

eDup, which uses clustering-based “similarity detection” and performs deduplication

by storing the centroid-videos with the highest perceptual-quality [12]. However, since

only the centroid of a set of “similar” videos are stored, restored video may no longer

represent the original visual content.

Long Video

S
ho

rt
V

id
eo

Fig. 1: The standard Dynamic Time

Warping algorithm aligns all frames

of both videos. Red squares represent

aligned video frames.

Match

Skip
Long Video

S
ho

rt
V

id
eo

Fig. 2: The modified version of DTW

used in this study aligns all elements

from the shorter video and can skip

frames from the longer video.

4 Methodology

Our set of techniques for video duplicate assessment are applied in the following steps:

Step 1: We use random prefix sampling [8] to sample YouTube videos uniformly and

at random. We refer to this set of sampled videos as sampled videos.

Step 2: We then search for the title of each sampled video using the text-based

search engine of YouTube, which returns a list of relevant videos. We refer to these

relevant videos as searched videos. These searched videos are used as a

candidate set of duplicates.

Step 3: For each (sampled video, searched video) pair, we calculate a simi-

larity score which accounts for temporally shifted frames. This score is used to deter-

mine whether the searched video is a duplicate of the sampled video.

Step 4: For each pair of duplicates whose score is below a threshold, we conduct a

manual comparison step to eliminate false positives.

In the rest of this section, we explain each step of our technique in detail for assess-

ing duplicate levels in YouTube.

4.1 Random Sampling of Videos

In order to uniformly sample YouTube videos, we use the random prefix sampling

method proposed by Zhou et al. [8]. Random prefix sampling involves querying the

YouTube search engine with a randomly selected video ID (VID) prefix. The returned

query results are existing videos whose VIDs match this random prefix. According to

Zhou et al., with a prefix length of five (“-” being the last/fifth symbol in the prefix), all

existing VIDs that match the prefix can be returned in one query. Therefore, during the

sampling procedure, we randomly generate a fixed number, Nprefix, 5-character long

prefixes. (In this work, we set Nprefix to 1,000.) In the remainder of the paper, we refer

to the videos selected by random prefix sampling as sampled videos. We make the

important assumption that the set of sampled videos contains no duplicates. We

validate this assumption through both theoretical and experimental analysis in Section

5.2.

4.2 Selection of Candidate Duplicate Pairs

The next step involves pruning the number of video pairs that must be assessed with a

computationally intensive duplicate detection method. We perform this pruning step by

leveraging the metadata-based search engines provided by many video sharing services.

In UGC sites, metadata can be an especially good source for retrieving duplicates be-

cause uploaders of these duplicates are incentivised to label their videos with metadata

to indicate similarity to original popular content, thereby attracting a larger number of

views.

We extract each sampled video’s title and use it to query the YouTube search

engine. This query returns a collection of videos with metadata related to the sampled

video’s title. Because this set of videos may still be too large to effectively pro-

cess with DTW, we rely on the ranking capability of YouTube’s metadata-based search

engine to further filter videos. In particular, we record the top 100 results from each

query. Some queries only return fewer than 100 results, and on average, we collected

82 searched videos for each sampled video. We refer to this set of videos

returned from this search procedure as searched videos. Pairs of sampled

videos and searched videos are sent to our DTW-based algorithm for dupli-

cate assessment.

4.3 Comparing Sampled and Searched Video Pairs

For comparison, we download both the sampled video and searched video

files from YouTube. YouTube usually encodes videos into multiple versions us-

ing different codecs, resolutions, and quantization levels to support streaming at

different bandwidths and to different devices. We retrieve only the H.264 Base-

line/AAC/MP4/360p version as we find this version is most often available.

After retrieving a set of searched videos associated with every sampled

video, we use FFmpeg [1] to extract images/frames from the video at one second

intervals. Note that we cannot use keyframes (i.e., I-frames) for comparison, as in

related work [20], because the interval between keyframes can vary between videos.

To detect pairs of duplicates, we employ a method based on Dynamic Time Warping

(DTW) [15]. Like DTW, our duplicate matching system attempts to align frames from

pairs of videos. However, we expect shorter videos to align to sub-portions of a longer

video. We therefore modified the basic DTW algorithm so that every element of the

shorter video must be matched while some elements of the longer video are allowed to

remain unmatched (see Figure 2).

Our variation of DTW operates on pairs of image sequences

A = a0, a1, · · · , ai, · · · , aI−1

B = b0, b1, · · · , bj , · · · , bJ−1

(1)

where I and J indicate the number of images in sequence A and B, correspondingly,

and we enforce I >= J by swapping videos if necessary.

Figure 3 shows the pseudocode of our adapted DTW algorithm. We use the output

of the function result to indicate the DTW score between A and B. The smaller the

DTW score, the more likely that videos A and B are duplicates.

1: ⊲ A,B, I, J are defined in Equation 1.

2: ⊲ d(ax, by) denotes distance between image ax from sequence A and image

by from sequence B.

3: function DTW(A, B)

4: assert I >= J
5: dtw0,0 = d(a0, b0)
6: for (i = 1; i < I; i++) do

7: dtwi,0 = d(ai, b0)

8: for (j = 1; j < J ; j ++) do

9: dtwj,j = dtwj−1,j−1 + d(aj , bj)

10: for (i = 1; i < I; i++) do

11: for (j = 1; j < min(i, J); j ++) do

12: dtwi,j = dtwi−1,j

13: dist = d(ai, bj)
14: if (dtwi−1,j−1 + dist < dtwi,j) then

15: dtwi,j = dtwi−1,j−1 + dist

16: return result = dtwI−1,J−1/J

Fig. 3: The DTW algorithm between two image sequences (i.e., videos) A and B.

A key component in the DTW algorithm is the image distance function d(ax, by).
Choosing a good image distance function is vital to the accuracy of our duplicate de-

tection method. We used a distance function between image histograms, denoted by

dh(ax, by).

Histogram Distance refers to a distance measurement between images based on the

relative frequency of different colors [7, 20]. For each image, x, we calculate its color

histogram Hx = (h1
x, h

2
x, · · · , h

M
x). (The color histogram is a global image descriptor.)

We consider images in HSV (Hue, Saturation, and Value) color space because the HSV

is more perceptually relevant to human eyes than the RGB representation. The color

histogram contains 5 bins for Hue, 8 bins for Saturation, and 16 bins for Value. The

total number of bins, M , is therefore M = 29. The Value section of the histogram

contains a greater number of histogram bins, reflecting the fact that human eyes are

more sensitive to light/dark contrast than to color information. As black borders/banners

may be introduced during video transcoding and affect our histogram distance metric,

we ignore pixels whose V alue = 0 (black) when calculating histograms.

The Histogram Distance between two images x and y is calculated as the

squared Euclidean distance between Hx and Hy:

dh(x, y) =

M
∑

k=1

(hk
x − hk

y)
2

This distance metric can be used to determine if a pair of videos are visually similar.

We consider a pair of videos duplicates if their Histogram Distance is less than

0.013. This threshold was chosen by calibrating against a precision-recall graph to give

a perfect recall (zero false-negative rate) on a set of 100 pairs of videos.

4.4 Manual validation of duplicate pairs

In the pairwise comparison step described above, we deliberately selected a high DTW

score threshold to achieve a high recall rate. This high threshold, however, can produce

a correspondingly high false discovery rate.

To alleviate this potential problem, we augmented our automated procedure with

a manual duplicate verification step that has false positive rate near zero. In the

manual verification step, for each duplicate pair, a human observer manually viewed

both the corresponding sampled video and searched video to determine if the

pair was a true duplicate. Specifically, the human observer considered the searched

video to be a duplicate of the sampled video under any of the following cases:

1. the searched video has the same video content as the sampled video.

2. the searched video is part of the sampled video.

3. the sampled video is part of the searched video.

5 Quantifying Video Duplicate Levels in YouTube

To estimate the number of duplicates in YouTube, we first randomly generated 1,000

prefixes. Using these 1,000 prefixes, we collected 6, 365 sampled videos and

512, 314 associated searched videos. For each searched video returned by

the YouTube search engine, we ran the variation of the DTW algorithm discussed in

Section 4 to produce a similarity score. We set the threshold for duplicate determination

high (as discussed in Section 4.3) to produce a low rate of false negatives (high recall),

then conducted a manual curation step to validate that each candidate pair returned by

the DTW algorithm constituted a true pair of duplicates.

Although the manual validation is time and resource intensive, this step was feasible

because only the relatively small number of pairs of videos marked as duplicates by the

DTW step were manually assessed.

5.1 Results

1 2 3 4 5 6 7 8 9 10>10
of Duplicates Found for Each Video

0

50

100

150

200

250

300

350

#
 o

f
S
a
m

p
le

d
 V

id
e
o
s

Fig. 4: # of duplicates found for

each sampled video with one or

more duplicates.

We present numeric results in Table 1. Out of

the 6, 365 sampled videos, our assessment

shows that 631 (10%) have duplicates within

YouTube. Assuming that the 6, 365 sampled

videos were drawn independently and the

counts of videos with duplicates and videos with

non-duplicates were drawn from a binomial dis-

tribution, we can compute a confidence interval

around the probability that a sampled video

has a duplicate using the Beta quantile function.

The 95% confidence interval around this proba-

bility is (0.0912, 0.1065). On average, for each sampled video associated with one

or more duplicates, 4.69 duplicates were discovered. Figure 4 shows the distribution

of the number of duplicates for each sampled video with one or more duplicates.

Table 1: Manually augmented assessment of YouTube duplicate levels.

Category

of Sampled videos # of dups Avg. # of dups found

sampled that have dups found per for sampled videos Duplicate

videos # % category that have duplicates ratio (%)

Video Category

Pets & Animals 155 7 4.5% 15 2.14 8.8%

Autos & Vehicles 232 27 11.6% 147 5.44 38.8%

Comedy 462 33 7.1% 169 5.12 26.8%

Education 183 25 13.7% 53 2.12 22.5%

Entertainment 851 59 6.9% 240 4.07 22.0%

Film & Animation 244 29 11.9% 76 2.62 23.8%

Gaming 588 33 5.6% 196 5.94 25.0%

Howto & Style 119 11 9.2% 29 2.64 19.6%

Music 1068 146 13.7% 642 4.40 37.5%

News & Politics 220 42 19.1% 203 4.83 48.0%

Nonprofit & Activism 84 13 15.5% 143 11.00 63.0%

People & Blogs 1477 156 10.6% 767 4.92 34.2%

Shows 7 0 0% 0 0.00 0.0%

Sports 392 32 8.2% 179 5.59 31.3%

Science & Tech 113 9 8.0% 92 10.22 44.9%

Travel & Events 170 9 5.3% 9 1.00 5.0%

Video Duration

Short [0, 240) 4490 418 9.3% 2310 5.53 34.0%

Medium [240, 1200] 1743 190 10.9% 596 3.14 25.5%

Long (1200,∞) 132 23 17.4% 54 2.35 29.0%

Video Popularity

Unpopular (< 1000) 5529 513 9.3% 2537 4.95 31.5%

Popular (≥ 1000) 836 118 14.1% 423 3.58 33.6%

Total

Total 6365 631 10.0% 2960 4.69 31.7%

Out of 631 videos that have duplicates, 304 have only one duplicate found and 63 have

more than 10 duplicates found, indicating the high variance of duplicate levels within

YouTube. In total, our manually augmented evaluation found 2, 960 duplicates of the

6, 365 sampled videos. Assuming that the number of duplicates associated with

each video is drawn from a normal distribution with a standard deviation of 3.38 (the

empirical standard deviation), we compute a 95% confidence interval of (0.382, 0.548)
around the average number of duplicates for each video. These measurements indicate

that roughly 1/3 of videos on YouTube are duplicates. Of the 2, 960 duplicate videos

found, only 327 (11%) have the same byte-level content as the sampled video,

indicating traditional cryptographic hash-based duplicate detection has only a limited

ability to detect duplicate videos.

Table 1 also shows a breakdown of sampled videos according to three at-

tributes along the rows: video category, video length, and popularity. The columns of

Table 1 give different duplicate statistics. Here “duplicate ratio” is defined as:

duplicate ratio =
of duplicates found

of sampled videos + # of duplicates found
(2)

Figure 5 shows the view count (i.e., popularity) of 6, 365 sampled videos.

5, 529 (87%) videos are viewed fewer than 1,000 times (unpopular). This statistic is

consistent with the findings in Zhou et al. [8] that only 14% of videos in a randomly

sampled YouTube dataset have a total view count of more than 1,000.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

of Views

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

t
iv

e
 F

r
a
c
t
io

n

Fig. 5: View Count Distribution

10
-3

10
-2

10
-1

10
0

10
1

10
2

Duration Ratio Between Pairs of
Sampled Videos and Duplicates

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
c
ti

o
n

Long

Medium

Short

Fig. 6:
Duration(sampled video)

Duration(duplicate)

10
-4
10

-3
10

-2
10

-1
10

0
10

1
10

2
10

3
10

4
10

5
10

6

View Count Ratio Between Pairs of
Sampled Videos and Duplicates

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
c
ti

o
n

Long

Medium

Short

Fig. 7:
ViewCount(sampled video)

ViewCount(duplicate)

Figure 6 shows the ratio between the duration of the sampled video and the

duration of the detected duplicate video. As shown in the figure, most duplicates have

the same duration as the sampled video. For Short, Medium, and Long videos re-

spectively, 1, 743 out of 2, 310 (75%), 375 out of 596 (63%), and 19 out of 54 (35%)

have the same durations as the sampled video. For Long videos, more than 40%

of their duplicates are shorter than the sampled video. These shorter duplicates

are excerpts from longer videos, extracted by users to meet the video duration limits

imposed by YouTube. Overall, among all the duplicates found, 72% have the same du-

ration as the sampled video, indicating that excerption occurs less frequently than

operations that preserve the length of the video.

We are also interested in determining if sets of duplicates have similar popular-

ities. Figure 7 shows the view count ratios of sampled videos versus those of

searched videos. Approximately 55% of the searched video duplicates are

watched more frequently than the sampled video. These differing frequencies indi-

cate that even if duplicates represent the same or similar visual content, the popularities

of individual copies of the same video can vary.

5.2 Uniqueness of Sampled Videos

Given that our duplicate assessment found that approximately one-third of the videos

in the YouTube database are duplicates, it seems counter-intuitive that our original as-

sumption holds that each of our 6, 365 sampled videos is unique. A relatively

short analysis, however, shows that this is a reasonable assumption. This analysis is a

specialization of the well-known Birthday paradox. Our setting differs from the stan-

dard Birthday paradox, where we would assume a uniform distribution over birthdays.

In our setting, a large number of people have a unique birthday (i.e., a large number of

videos have no duplicates and will be unique in our sample of 6, 365). The probabil-

ity that two or more people in a sample share a birthday, given this highly unbalanced

distribution of birthdays, can be computed using a recurrence which we describe below:

R(N,T) =

(1− q(T))×
(

(1− p)×R(N − 1, T)

+ p×R(N − 1, T + 1)
)

if N > 0

1 if N = 0

(3)

where R(N,T) indicates the probability that a sample of N videos does not contain any

duplicates, given that we have already drawn T videos that are associated with copies

in the YouTube database (or any video database), where each of these T videos is dis-

tinct. The recurrence captures the idea that, if we do not wish to include duplicates in

our sample of original videos, we must first draw a non-duplicate given the set of T
previously drawn videos associated with a duplicate in the video database with proba-

bility 1 − q(T). This video must then be selected either from the set of videos with no

associated duplicates with probability 1 − p or from the set of videos that has at least

one duplicate with probability p.

The base case is R(0, T) = 1, where have already drawn T videos that are associ-

ated with duplicates in the YouTube database, and we have no further videos that need

to be selected.

To evaluate this recurrence, we first need to estimate the total number of videos

in YouTube. During the random sampling phase, we retrieved 6, 365 unique video IDs

using 1000 randomly generated prefixes. Using the method proposed by Zhou et al. [8],

we estimated the total number of videos on YouTube as 384×64× 6365
1000 ≈ 849 million,

indicating there were approximately 849 million videos on YouTube at the time we

collected the data (July 2013).

Our measurement results indicate that approximately 10% of the original videos

on YouTube have duplicates, meaning that we should set p = 0.1 in the computation

above. Given our result from the previous section, that each video having one or more

duplicates has on average, approximately 4.69 duplicates associated with it, we can

estimate the probability of drawing a duplicate for given video as 4.69
849×106 ≈ 1

181×106 .

Evaluating the above recurrence using a dynamic programming method for q(T) =
T

181×106 and p = 0.1 yields R(6365, 0) = 0.989. This result means that if we resampled

the set of 6, 365 videos over 100 separate trials, then we would expect this set of 6, 365
sampled videos to contain duplicates in fewer than two of these trials.

Further, we examined the set of sampled videos by first querying the set of

searched video VIDs to determine if any match a sampled video VID. For

the small set of VIDs that matched, we ran a further DTW comparison. This DTW phase

produced much larger DTW distances than the duplicate threshold for all pairs of videos

examined, indicating that none of the 6, 365 sampled videos were duplicates. We

also performed a manual confirmation step, providing further evidence that the 6, 365
sampled videos are unique.

5.3 Extra Storage Space Occupied by Duplicate Videos

A direct negative impact of video duplication is the extra storage space consumed by

duplicate videos. To estimate the percentage of additional space needed by YouTube

to store duplicate videos, we grouped each sampled video and its corresponding

duplicates into a duplicate set, denoted by D. If no duplicates were associated with

a sampled video, v, then we constructed the duplicate set, D, to contain only v,

i.e., D = {v}. For each duplicate set, we selected the video with the largest file size

to be the representative video. We denote the set of all duplicate sets by D
and the representative video of set D by Dr. Note that for all videos, we

only retrieved the H.264 Baseline/AAC/MP4/360p version, thus encoding rates for all

videos in our dataset should be similar. Short videos in D will likely be sub-videos

of longer videos in D. Therefore selecting the video with the largest file size as the

representative video means that the other, shorter, videos in the set are sub-

videos of the representative video. Given these duplicate sets and correspond-

ing representative videos, we computed the space used to store duplicates as

a percentage of the total storage space as follows:

1−

∑

D∈D size(Dr)
∑

D∈D

∑

d∈D size(d)
(4)

Our results show that the total size of representative videos is 91.9 GB, and the total

size of all videos in all duplicate sets is 121.0 GB. These space requirements indicate

that roughly 24.0% YouTube storage is occupied by duplicates.

6 Conclusion

Duplicate videos within large-scale video sharing services have wide ranging potential

impacts on data center and network level storage, caching, and energy consumption.

A critical first step in determining the true cost of video duplication involves accurate

measurement of duplicate levels.

In this work, we proposed a set of techniques for assessing duplicate levels within

large-scale video sharing services. These techniques combined video sampling, video

search, computing pairwise video similarity through a variation of dynamic time warp-

ing, and a manual validation step. Applying these techniques on YouTube produces

a duplicate ratio estimate of 31.7%. Furthermore, we calculate that these duplicates

occupy 24.0% of YouTube’s video data storage. These relatively high levels of dupli-

cation indicate that further work should be conducted to evaluate specific system-level

tradeoffs associated with datacenter costs, as well as network-related concerns such as

performance of in-network caching under assessed duplicate levels.

To allow duplicate assessment on ever-increasing video databases, we plan to ex-

tend our video duplicate assessment techniques so they can scale to much larger video

samples. A potentially necessary step toward scaling this assessment would involve de-

veloping a system to index videos by semantic content. This type of indexing system

would be essential for reducing the number of video pairs that would need to be evalu-

ated by a computationally-expensive pairwise video comparison technique.

Acknowledgements. We appreciate constructive comments from anonymous referees

and our shepherd Dongsu Han. The work is partially supported by High-Tech Research

and Development Program of China (“863 China Cloud” Major Program) under grant

SQ2015AAJY1595, by China NSF under grant 61471217, by China Postdoctoral Sci-

ence Fund under grant 2014M550735, and by NSF under grants CNS-0746649 and

CNS-1117300.

References

1. FFmpeg. http://www.ffmpeg.org/.

2. Sandvine Global Internet Phenomena Report 1H 2014. https://www.sandvi

ne.com/downloads/general/global-internet-phenomena/2014/1h

-2014-global-internet-phenomena-report.pdf.

3. YouTube Statistics. http://www.youtube.com/yt/press/statistics.ht

ml.

4. W. J. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur. Single Instance Storage in Windows

2000. In Proc. of USENIX WSS, 2000.

5. M. Douze, A. Gaidon, H. Jegou, M. Marszałek, C. Schmid, et al. Inria-lears video copy

detection system. In TREC Video Retrieval Evaluation (TRECVID Workshop), 2008.

6. C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian, P. Strzelczak, J. Szczepkowski,

C. Ungureanu, and Mi. Welnicki. HYDRAstor: A Scalable Secondary Storage. In Proc. of

USENIX FAST, 2009.

7. A. Hampapur, K. Hyun, and R. M. Bolle. Comparison of Sequence Matching Techniques for

Video Copy Detection. In Electronic Imaging 2002, pages 194–201. International Society

for Optics and Photonics, 2001.

8. J. Zhou, Y. Li, V. K. Adhikari, and Z.-L. Zhang. Counting YouTube Videos via Random

Prefix Sampling. In Proc. of ACM IMC, 2011.

9. H. Jégou, M. Douze, G. Gravier, C. Schmid, P. Gros, et al. Inria lear-texmex: Video copy

detection task. In Proc. of the TRECVid 2010 Workshop, 2010.

10. K. Jin and E. L. Miller. The Effectiveness of Deduplication on Virtual Machine Disk Images.

In Proc. of ACM SYSTOR, 2009.

11. A. Kathpal, M. Kulkarni, and A. Bakre. Analyzing compute vs. storage tradeoff for video-

aware storage efficiency. In Proc. of USENIX HotStorage, 2012.

12. A. Katiyar and J. Weissman. ViDeDup: An Application-Aware Framework for Video De-

duplication. In Proc. of USENIX HotStorage, 2011.

13. D. G Lowe. Object recognition from local scale-invariant features. In Proc. of IEEE ICCV,

volume 2, pages 1150–1157, 1999.

14. K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 27(10):1615–1630, 2005.

15. H. Sakoe and S. Chiba. Dynamic Programming Algorithm Optimization for Spoken Word

Recognition. Acoustics, Speech and Signal Processing, IEEE Transactions on, 26(1):43–49,

1978.

16. H. T. Shen, X. Zhou, Z. Huang, J. Shao, and X. Zhou. UQLIPS: A Real-time Near-duplicate

Video Clip Detection System. In Proc. of ACM VLDB, 2007.

17. S.-H. Shen and A. Akella. An information-aware QoE-centric mobile video cache. In Proc.

of ACM MobiCom, 2013.

18. C. Ungureanu, B. Atkin, A. Aranya, S. Gokhale, S. Rago, G. Cakowski, C. Dubnicki,

and A. Bohra. HydraFS: a High-Throughput File System for the HYDRAstor Content-

Addressable Storage System. In Proc. of USENIX FAST, 2010.

19. X. Wu, C.-W. Ngo, A. G. Hauptmann, and H.-K. Tan. Real-time Near-duplicate Elimina-

tion for Web Video Search with Content and Context. Multimedia, IEEE Transactions on,

11(2):196–207, 2009.

20. X. Wu, A. G. Hauptmann and C.-W. Ngo. Practical Elimination of Near-Duplicates from

Web Video Search. In Proc. of ACM Multimedia, 2007.

21. J. Yang, Y.-G. Jiang, A. G. Hauptmann, and C.-W. Ngo. Evaluating Bag-of-visual-words

Representations in Scene Classification. In Proc. of ACM MIR, 2007.

22. C. Zauner. Implementation and benchmarking of perceptual image hash functions. Master’s

thesis, Upper Austria University of Applied Sciences, Hagenberg Campus, 43, 2010.

23. B. Zhu and K. Li. Avoiding the Disk Bottleneck in the Data Domain Deduplication File

System. In Proc. of USENIX FAST, 2008.

